
BRINGS VALUE NOT COSTS

Applicata JN Signalling Processing Unit (SPU) is

a signalling layer software-only implementation

covering SS7, SIP† and DIAMETER protocols.

It implements the separation of signalling and

application processes in a distributed architec-

ture. No specialised hardware is required and

SPU functions can be virtualised.

The signalling stacks and the application(s) run

in different processes communicating with

each other over IP.

All applications and application instances at the

application plane share the same Signalling

Processing Unit(s) running at the signalling

plane. The applications can be easily scaled

without affecting the signalling layer. Typically,

two SPUs are enough at the signalling layer,

providing dual resiliency and high availability.

Applicata Signalling
Processing Unit (JN SPU)

1

JN SPU OA&M Interface 1

JN SPU Management
Data Model and CLI Shell

2

JN SPU Configuration 3

JN SPU Monitoring 3

Automated JN SPU Mon-
itoring, Nagios Example

4

Inside this publication:

KEY POINTS

 Easy integration

with applica-

tions written in

different lan-

guages

 Reduced costs of

ownership

 Proven and ex-

tendable plat-

form

 Extremely high

performance

and availability

 Round the clock

support

Applicata JN SPU offers a cost effective and

feature reach signalling solution with

integrated protocol stacks, configuration and

monitoring, rate control, message

dispatching, very high performance, easy

integration, network virtualisation, service

high availability and scalability.

Figure 1. Applicata Signalling Processing Unit:

Signalling and Applications planes are separated in a distributed

signalling architecture.

Applications can scale easily sharing the same signalling modules and

licenses.

Signalling Plane

SPU A:
Protocol Stacks,

Msg Dispatching,
HA Management

SPU B:
Protocol Stacks,

Msg Dispatching,
HA Management

Application Plane

App 1 App 2 App N

SS7 IMS EPC

1. Applicata Signall ing Processing Unit

† In the roadmap

Easy integration

High Scalability and Availability

Signalling Network Function Virtualisation

Integrated Protocol Stacks, Configuration and Monitoring

2. JN SPU OA&M Interface

This white paper describes Applicata JN SPU
integrated OA&M interface. It provides an easy
to use functionality for manual or automated
system configuration and monitoring. Diameter
stack has been used when illustrating the con-
cepts in this document, the same applies for SS7

and SIP† stacks.

JN SPU management interface is secured over
SSH protocol. The system implements a custom
SSH shell process that provides the correspond-
ing management functionality. The user access
authentication is based on password or public/

private keys.

The configuration and monitoring commands
over the management interface can be invoked
either manually or automatically. The manual

use requires a standard SSH client console.

The configuration and monitoring functionality
is based on a management model of the SPU

system that represents the configurable and
monitorable parameters in a tree view. The
custom shell implements commands to view

and/or edit the branches or leaves in the tree.

JN SPU custom SSH shell for OA&M is imple-
mented very efficiently. New SSH connections
require starting of an Erlang process, a very
light operation that does not create a new OS
process. This efficiency is especially important
for handling the monitoring requests sent peri-
odically and, possibly, frequently by monitoring
consoles that typically use a pull based monitor-

ing mechanism.

The use of OA$M interface for JN SPU

configuration and management is described in

next sections. An example of using Nagios for

automated JN SPU monitoring is also included.

JN SPU OA&M interface uses a model that represents the relat-

ed configuration and monitored data as a tree. OA&M inter-

face provides commands for listing, editing and saving this

data, either manually or automatically.

A fragment of JN SPU management data tree is shown in Fig-

ure 2. It comprises both static and dynamic data. The static

data belongs to the configuration of the SPU node . The dy-

namic data (shown in Red in Figure 2) changes during the

processing and reflects the current state of the configured SPU

elements.

Each node in the management data model has a Node Type,

Node Name and may have a value with a Value Type.

Nodes in the tree can be of type Property, List, Choice,

LeafList or Leaf. The first three types appear at the root or

as nodes at the middle of the tree, these are parents of some

descendant nodes in the management data tree. LeafList

type has multiple values and no descendants. Leaf type has

single value and no descendants.

JN SPU OA&M server listens on port 8822 by default and starts

a command line interface (CLI) shell when connected over ssh.

CLI shell provides browsing and configuration modes of oper-

ation. The configuration tree can be listed and examined in

browsing mode and it can be changed in configuration

mode. The help command prints context sensitive help in JN

SPU CLI shell. The output of help command while in browsing

mode is shown in Figure 3.

P A G E 2 J N S P U , C O N F I G U R A T I O N A N D M O N I T O R I N G I N B T E R F A C E

3. JN SPU Management Data Model and OA&M CLI Shell

Figure 2. Fragment of JN SPU management data tree,

dynamic data shown by nodes in Yellow

Figure 3. Context sensitive help command

Figure 4. Listing management data tree

with show command
Figure 5. Context sensitive TAB

completion

JN SPU CLI shell provides the show command that lists the

nodes of the management data tree when issued in browsing

mode (Figure 4). The listed information contains both static

and dynamic data of the corresponding nodes in the configu-

ration tree. The dynamic state and statistics data in

diameter transport 0 peer 0 node is shown in Red in

Figure 4. The dynamic state and statistics data in di-

ameter transport 1 client node is shown in Red in

Figure 5.

Normally, the dynamic data is subject of the monitoring and it

can be periodically pulled over the OA&M interface. The use of

JN SPU OA&M interface for monitoring is described in Section

5. An example of using Nagios console for automated moni-

toring over JN SPU OA&M interface is included in Section 6.

Pressing TAB key brings context sensitive command comple-

tion as illustrated in Figure 5.

When the command config is issued in CLI browsing mode

then the CLI configuration mode is entered. JN SPU configura-

tion data can be created or modified in this mode. This is de-

scribed in the next Section 4.

09:19 $ ssh -p 8822 admin@10.99.99.11
admin@10.99.99.11's password:
> help
Use 'show [NodeName ...]' to list the nodes and their val-
ues
Use 'config' to enter configuration mode
Use 'exit' to exit CLI shell

>

> show
spu {
 users "default" {
 port 9000
 }
}
diameter {
 transport 0 {
 origin-host "spu.realm1"
 origin-realm "realm1"
 applications {
 s6ad
 }
 host-ips {
 }
 protocol tcp
 local-ip 127.0.0.1
 local-port 3868
 server {
 accept {
 127.0.0.1 10.0.0.1
 }
 peer 0 {
 destination-host
"spu.realm2"
 destination-realm
"realm2"
 state okay
 statistics {
 recv-cnt 54
 recv-max 132
 recv-avg 74
 recv-oct 4048
 recv-dvi 3
 send-cnt 54
 send-max 144
 send-avg 75
 send-oct 4072
 send-pend 0
 }
 }
 }
 }
 transport 1 {
 origin-host "spu.realm2"
 origin-realm "realm2"
 applications {
 s6ad
 }
 host-ips {
 ...

> show diameter transport
0 1
> show diameter transport 1
origin-host "spu.realm2"
origin-realm "realm2"
applications {
 s6ad
}
host-ips {
}
protocol tcp
local-ip 127.0.0.1
local-port 0
client {
 remote-ip 127.0.0.1
 remote-port 3868
 destination-host
"spu.realm1"
 destination-realm "realm1"
 state okay
 statistics {
 recv-cnt 70
 recv-max 144
 recv-avg 74
 recv-oct 5244
 recv-dvi 4
 send-cnt 70
 send-max 132
 send-avg 74
 send-oct 5244
 send-pend 0
 }
}

>

Root

Property
spu

Property
diameter

List
users
String

Property
log

List
transport
Integer

ListElement
transport 0

Leaf
origin-host

String

Leaf
origin-realm

String

LeafList
applications

Enum

Leaf
protocol
tcp|sctp

Leaf
local-ip

IPAddress

Leaf
local-port

Integer

Choice
server|client

Property
server

Property
client

List
peer

Integer

LeafList
accept

IPAddress

Leaf
remote-ip
IPAddress

Leaf
remote-port

Integer

Leaf
dest-host

String

Leaf
dest-realm

String

Leaf
state
Enum

LeafList
statistics

Enum

Leaf
state
Enum

LeafList
statistics

Enum

JN SPU is configured over the OA&M inter-

face using JN SPU CLI shell commands. Nor-

mally, the configuration is done manually .

Alternatively, the configuration process can

be automated over the same interface.

The configuration process of Diameter proto-

col stack is illustrated in this section. The same

approach applies when configuring SS7 MAP,

SS7 CAP and SIP stacks.

After the ssh connection the JN SPU CLI shell

is in browsing mode. To enter the configura-

tion mode the config command should be

issued. The command prompt shows []> to

indicate that the current node is the root of

the configuration data tree. This is shown in

Figure 6. The context sensitive TAB comple-

tion and help command are available in con-

figuration mode too.

As the output of help command shows

switching back to CLI shell browsing mode

can be done by using the commands commit

or cancel. The commit command saves and

activates the configuration changes after per-

forming some formal checks. The cancel com-

mand discards any changes made in CLI shell

configuration mode.

When help command is issued at a given

level in the configuration tree it lists the nodes

at this level and shows some special com-

mands that may be used for changing the

descendants of the current node or for navi-

gate up to the parent node or to the top in

the tree. This is illustrated in Figure 7. The

prompt changes to show the current node in

the configuration data tree.

4. JN SPU Configuration

J N S P U , C O N F I G U R A T I O N A N D M O N I T O R I N G I N B T E R F A C E P A G E 3

5. JN SPU Monitoring

JN SPU is monitored over the OA&M interface

using JN SPU CLI shell show command. Nor-

mally, the monitored data retrieved by the

invocation of show command refer to the

dynamic data in the configuration data tree

and are sent periodically by some external

automated process or monitoring console.

Alternatively, for incidental queries, the moni-

tored data can be retrieved manually.

The monitoring process of Diameter protocol

stack is illustrated in this section. The same

approach applies when monitoring SS7 MAP,

SS7 CAP and SIP stacks.

The monitored data is retrieved after estab-

lishing a ssh connection with JN SPU OA&M

server. A new shell is started and the show

command with the parameters related to the

required data can be executed. The moni-

tored state is included in the show command

response. The manual version of this process

is illustrated in Figure 8.

Figure 6. Entering and leaving CLI shell configuration mode

admin@10.99.99.11's password:

12:00 $ ssh -p 8822 admin@10.99.99.11

admin@10.99.99.11's password:

> help

Use 'show [NodeName ...]' to list the nodes and their values

Use 'config' to enter configuration mode

Use 'exit' to exit CLI shell

> config

[]> help

NodeType NodeName ValueType

Property -> spu

Property -> diameter

Use 'show' to list the nodes and their values

Use 'edit <NodeName ...>' to edit an existing node of type Property

Use 'edit <NodeName ...> <Value>' to edit an existing node of type List

Use 'commit' to commit the configuration changes

Use 'cancel' to cancel the configuration changes

[]>

[diameter]> edit transport 0

[transport 0]> help

NodeType NodeName ValueType

--

Leaf -> origin-host String

Leaf -> origin-realm String

LeafList -> applications {s6ad | slh ...}

LeafList -> host-ips {IpAddress ...}

Leaf -> protocol sctp | tcp

Leaf -> local-ip IpAddress

Leaf -> local-port Integer

Choice -> server | client Property | Property

Use 'show' to list the nodes and their values

Use 'edit <NodeName ...>' to edit an existing node of type Property

Use 'edit <NodeName ...> <Value>' to edit an existing node of type List

Use 'add <NodeName> <Value>' to add a new node of type List

 to add value to node of type LeafList

Use 'del <NodeName> <Value>' to delete an existing node of type List

 to remove value from node of type LeafList

Use 'set <NodeName> <Value>' to set the value of type Leaf or LeafList

nodes

Use 'up[!]' to return to parent node in the configuration

Use 'top[!]' to return to root node in the configuration

Use 'commit' to commit the configuration changes

Use 'cancel' to cancel the configuration changes

[transport 0]>

Figure 7. Changing the values of the nodes in the configuration tree

12:52 $ ssh -p 8822 admin@10.99.99.11

admin@10.99.99.11's password:

> show diameter transport 0 server peer 0

destination-host "spu.realm2"

destination-realm "realm2"

state okay

statistics {

 recv-cnt 450

 recv-max 132

 recv-avg 74

 recv-oct 33388

 recv-dvi 0

 send-cnt 450

 send-max 144

 send-avg 74

 send-oct 33340

 send-pend 0

}

>

Figure 8. Monitoring dynamic peer state and statistics data over OA&M interface

Applicata specialises in the design, development, installation and

integration of systems and software for law enforcement and tele-

communications. Applicata team guarantees that top quality

products and services will be delivered within tough deadlines

and budgets. Applicata is well known by its competitive ad-

vantages, including low cost, flexibility in covering specific cus-

tomer needs, on time delivery and extended support.

www.applicata.bg

About Applicata

Applicata

6, Angista Str

1527 Sofia, Bulgaria

Phone: +359 2 981 4203

Fax: +359 2 943 4719

office@applicata.bg

www.applicata.bg

Sales Asia

10F, No. 1, Lane 25, XinSheng S. Rd., Sec. 3

Taipei 10660, Taiwan R.O.C.

Tel: +886 2 8369 5685

Fax: +886 2 8369 5685

sales@applicata.bg

www.applicata.bg

Sales Europe

Ashwood, Woodcote

Guildford, Surrey, GU2 4HQ, UK

Tel: +44 1483 506384

Fax: +44 1483 506384

sales@applicata.bg

www.applicata.bg

6. Automated JN SPU Monitoring, Nagios Example

P A G E 4

† In the roadmap

J N S P U , C O N F I G U R A T I O N A N D M O N I T O R I N G I N B T E R F A C E

Nagios Core or other Nagios flavours can be

easily configured for automated JN SPU Moni-

toring over JN SPU OA&M interface.

Nagios Core uses plugins for retrieving the

state of the monitored services from the re-

mote hosts. Nagios plugins are external pro-

cesses that can be implemented in different

programming languages. The specific Nagios

requirement is that a process implementing a

Nagios plugin must return an exit code (0, 1,

2, 3, etc), and one ore more lines describing

the monitored service state. The status of the

monitored service is set to OK, WARNING,

CRITICAL, UNKNOWN, depending on the exit

code of the plugin.

JN SPU is delivered with check_spu.pl

plugin implemented in Perl. When invoked by

Nagios process, the plugin establishes a ssh

session based on a public/private key pair,

executes the corresponding command in JN

SPU CLI shell, parses the result and returns the

corresponding exit code and service status

description lines.

Nagios console executing check_spu.pl plugin

is shown in Figure 9. Similarly, other monitor-

ing console may be used for automating the

JN SPU monitoring over its OA&M interface.

Figure 9. Automated JN SPU monitoring with Nagios

